Sylvester equations and polynomial separation of spectra
نویسندگان
چکیده
منابع مشابه
Polynomial Solution of Sylvester Matrix Equation
where X ∈ M(n,m)(K), play a central role in many areas of applied mathematics and in particular in systems and control theory. It is well known that if K is an algebraically closed field then the matrix equation (1) possesses a unique solution if and only if the matrices A and B have no common eigenvalues (see [[3]] and [11]). In this work we give a brief survey of methods used to solve the (SM...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولOn the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملControllability and nonsingular solutions of Sylvester equations
The singularity problem of the solutions of some particular Sylvester equations is studied. As a consequence of this study, a good choice of a Sylvester equation which is associated to a linear continuous time system can be made such that its solution is nonsingular. This solution is then used to solve an eigenstructure assignment problem for this system. From a practical point view, this study...
متن کاملCoupled systems of equations with entire and polynomial functions
We consider the coupled system$F(x,y)=G(x,y)=0$,where$$F(x, y)=bs 0 {m_1} A_k(y)x^{m_1-k}mbox{ and } G(x, y)=bs 0 {m_2} B_k(y)x^{m_2-k}$$with entire functions $A_k(y), B_k(y)$.We derive a priory estimates for the sums of the rootsof the considered system andfor the counting function of roots.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2019
ISSN: 1846-3886
DOI: 10.7153/oam-2019-13-62